If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-16x-75=0
a = 16; b = -16; c = -75;
Δ = b2-4ac
Δ = -162-4·16·(-75)
Δ = 5056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5056}=\sqrt{64*79}=\sqrt{64}*\sqrt{79}=8\sqrt{79}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{79}}{2*16}=\frac{16-8\sqrt{79}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{79}}{2*16}=\frac{16+8\sqrt{79}}{32} $
| 2x+(244-x)*2=584 | | Y=6X2+5x-4 | | 2x+(244-x)*4=584 | | 3x=3(33)=100 | | 16+7.9x=12+8.3x | | 2x+(244-x)*4=600 | | 2x+(250-x)*4=600 | | 1.1=0.7*k+0 | | 66=-9n-12 | | 3x-8x-12=-5x+7-12 | | F(x)=3x-1- | | 7y(4y-39)=0 | | 2x-9/15-x+2/6=2x+15/10-3x+4/5-1/6 | | 24=+3x | | (10x-4)/(6x-3)=0 | | 7/6x+5/12=3+5/18x | | 2.2y=55 | | 1.2+y=55 | | -3(y-2)+5=7(y-4)-1 | | 27×x=1026 | | 9^2x=3^x^-3 | | 12x=10–2 | | 9x-3(x+2)=30 | | 20+(-3.5x)+(-1.5x)=10 | | 9^2x=3^x-3 | | 3^2x+1-26(3^x)=16 | | 2(4^x)-17(2^x)+8=0 | | (x-3)(3x²-15x+18)=0 | | 4x-10=-2x+2. | | x^2+12-2=0 | | 7x-4x+9=11 | | C=0.15p+11.5 |